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Smoothed time series showing the NAO indices from the 
greenhouse gas forced simulations, when their SLP fi elds 
are projected onto the corresponding control run NAO 

patterns.  Observed NAO time series is also shown.

Statistics given for each model

pattern: pattern correlation between 
observed and simulated mean SLP

% con: percentage of Atlantic SLP 
variability explained by EOF1 during 
the control (observed value is 40%)

% g1: percentage of Atlantic SLP 
variability explained by EOF1 during 
the g1 simulation

pattern: 0.79

% con: 56

% g1: 42

pattern: 0.76

% con: 66

% g1: 71

pattern: 0.81

% con: 40

% g1: 42

pattern: 0.88

% con: 55

% g1: 47

pattern: 0.85

% con: 53

% g1: 50

pattern: 0.67

% con: 44

% g1: 48

This poster builds upon the earlier work of Osborn et al. 
(1999), Ulbrich et al. (1999), Zorita & Gonzalez-Ruoco (2000) 
and others, in evaluating and applying climate model simula-
tions to answer a number of questions about the North Atlantic 
Oscillation.  This study expands the comparison to include six 
different global climate models, and is being written up with full 
details and an extended discussion for submission to a scientifi c 
journal.  Throughout this work, seasonal-mean winter (Decem-
ber to March) sea level pressure (SLP) data are used, and the 
North Atlantic Oscillation and its index are defi ned as the lead-
ing empirical orthogonal function (EOF) and associated principal 
component (PC) time series of the Atlantic half of the Northern 
Hemisphere SLP fi eld.

The fi rst column (hPa) of maps shows how well the models 
reproduce the winter SLP climatology (see also the pattern cor-
relation values at the right-hand side).  The large scale fea-
tures are reasonably simulated, though their absolute values are 
sometimes in error.  The leading mode of Atlantic-sector inter-
annual variability (column two, expanded to give hemispheric 
patterns), defi ned by the leading EOF of SLP from each model’s 

control run, is clearly the NAO in all cases.  Projecting observed 
SLP onto the simulated EOFs results in time series that closely 
match the observed leading PC, indicating that biases in the 
simulated NAO patterns are relatively unimportant.  Neverthe-
less, they are interesting, with the main bias being a tendency 
for enhanced correlation with the North Pacifi c SLP in some 
models (becoming closer to an Arctic Oscillation, despite being 
defi ned using only Atlantic-sector SLP).  In most models, this 
leading EOF explains more variance than is the case for the 
observations.

If we keep this defi nition of the NAO constant, and then 
project the SLP from simulations with increasing greenhouse 
gas concentrations (g1 simulations) onto the control run EOFs, 
we yield the time series shown below.  All six models indicate 
increasing values of the NAO index, though with varying magni-
tude.  The reason for these trends is that there is a long-term 
trend in the SLP patterns in all models when enhanced green-
house forcing is applied (column three, hPa per century), which 
either resembles the NAO (e.g., CCSR/NIES, ECHAM4/OPYC, 
NCAR PCM, and HadCM3) or at least has some power over the 

NAO centres of action.
An alternative approach (e.g., Ulbrich & Christoph, 1999) is 

to allow the NAO defi nition to alter and diagnose how the oscilla-
tion itself may change under enhanced greenhouse forcing.  The 
fourth column indicates the EOFs of the (detrended) SLP fi eld 
computed from the 2050-2099 period of the g1 simulations.  
Under the altered forcing, the NAO explains a similar amount 
of variance (when considering all models together), though the 
interannual variability may be lower.  The EOF patterns show a 
number of changes: for CCSR/NIES, CSIRO MK2, ECHAM4/OPYC 
and HadCM3, the Azores centre of action shifts eastward (and 
slightly northward), while for CGCM1 and ECHAM4/OPYC the 
Iceland centre of action shifts eastward.  CCSR/NIES, ECHAM4/
OPYC and NCAR PCM show an intensifi cation of the Azores 
centre of action, while CGCM1 and HadCM3 show the reverse.

Further work is in progress, assessing temporal variability 
changes and comparing recent observed NAO changes with the 
range of variability simulated by the climate models (see, e.g., 
Osborn et al., 1999).


